Name: \qquad
Word Problem Primer How to Solve Word Problems
\qquad

```
"How R U?"
```

You know that this means "How are you?". It is shorthand, abbreviation, "code"; it is a quicker way to write. Well, so is $\mathrm{F}=\mathrm{ma}$; you just don't know the code yet.

$$
\begin{gathered}
\mathrm{F}=\mathrm{ma} \\
\text { Formulas are just } \\
\text { shorthand. }
\end{gathered}
$$

Learn what the letters stand for.

In order to read "the code" you have to know what the letters stand for. This table will tell you many of them.

There will be other letters, too. You will have to add them as you learn them.

Variables Defined with Units		
Variable	Quantity	Standard Units
a	acceleration	$\mathrm{m} / \mathrm{s}^{2}$
D	distance	$\mathrm{m}(\mathrm{meters})$
E	energy	J (joules)
F	force	N (newtons)
F_{w}	force of weight	N (newtons)
g	acceleration due to gravity	$\mathrm{g} \mathrm{=} \mathrm{9.8} \mathrm{m/s}^{2}$
m	mass	kg (kilograms)
p	momentum	$\mathrm{kgm} / \mathrm{s}$
S	speed	m / s
T	time	$\mathrm{sec}, \mathrm{min}$, or hr
v	velocity	m / s
MA	mechanical advantage	no units

$$
\mathrm{F}=\mathrm{ma}
$$

F is force (in N) m is mass (in kg) a is acceleration (in $\mathrm{m} / \mathrm{s}^{2}$)

The units are VERY important because word problems will not tell you what letters stand for, but the UNITS will..

Learn what you're

 supposed to do with the letters: math.Once you know what the letter mean, you have to know what math function to perform. This table will tell you.

The Math Code

$\mathrm{m}+\mathrm{a}$	is add	means m plus a
$\mathrm{m}-\mathrm{a}$	is sub	means m minus a
ma	is multi	means m times a
m / a	is div	means m divided by a

$$
\mathrm{F}=\mathrm{ma}
$$

Means Force equals the mass times the acceleration.

Learn how to move the

 numbers around in the formulas. (There is a formula chart on the back.)Often you will have to solve for a different letter in the formula. You will have to know how to use math to do this.

To Move Letters in Formulas	
If $\mathrm{m}+\mathrm{a}$	then subtract by m or a
If $\mathrm{m}-\mathrm{a}$	then add by a
If ma	then divide by m or a
If m / a	then multiply by a

Make sure what ever you do to one side of an equation do to the other side, too or the equation is no longer equal!

$$
\text { If } \mathrm{F}=\mathrm{ma}
$$

Then to get " a ", divide by " m " on both sides:

$$
\frac{\mathrm{F}}{\mathrm{~m}}=\frac{\mathrm{ma}}{\mathrm{~m}}
$$

m's cancel on right side

$$
\text { So, } \mathbf{a}=\frac{\mathbf{F}}{\mathbf{m}}
$$

5 Steps to Solve Word Problems

> Use a five-step process to solve word problems.

We will do a few examples on the back of this paper.

Name: \qquad
Period: \qquad
Δ means "change of" ("delta"). So ΔS is "delta S " and means "change of speed". $\Delta \mathrm{T}$ is change of time.

Formula Chart
(Add other formulas here)

$\mathrm{S}=\Delta \mathrm{D} / \Delta \mathrm{T}$	$\mathrm{F}_{\text {net }}=\mathrm{ma}$	$\mathrm{MA}=\mathrm{F}_{\text {out }} / \mathrm{F}_{\text {in }}$	
$\mathrm{A}=\Delta \mathrm{S} / \Delta \mathrm{T}$	$\mathrm{F}_{\text {net }}=\mathrm{F}_{\text {pos }}-\mathrm{F}_{\text {neg }}$	$\mathrm{MA}=\mathrm{D}_{\mathrm{E}} / \mathrm{D}_{\mathrm{R}}$	
$\Delta \mathrm{T}=\mathrm{T}_{2}-\mathrm{T}_{1}$	$\mathrm{~F}_{\mathrm{w}}=\mathrm{mg}$	$\mathrm{Arm}_{\text {in }}\left(\mathrm{F}_{\text {in }}\right)=\operatorname{Arm}_{\text {out }}\left(\mathrm{F}_{\text {out }}\right)$	
$\Delta \mathrm{D}=\mathrm{D}_{2}-\mathrm{D}_{1}$	$\mathrm{p}=\mathrm{mv}$		
$\mathrm{S}_{\text {average }}=\mathrm{D}_{\text {total }} / \mathrm{T}_{\text {total }}$	$\mathrm{m}_{\mathrm{L}} V_{\mathrm{L}}=\mathrm{m}_{\mathrm{R}} V_{R}$		

\qquad
\qquad To learn to solve word problems from this page you can do either one of two things:

1) You can read the problem and try to solve it by yourself then check the answer.

OR
2) You can cover up the answers and uncover each step as the page progresses.

Problem 1:

A 25 kg box is pulled by a 125 newton force. What acceleration will it have?

Step 1: assign letters (variables) to the numbers given and to what you are looking for:
$\mathrm{m}=25 \mathrm{~kg} \quad \mathrm{~F}=125 \mathrm{~N} \quad \mathrm{a}=$?
Step 2: Find an equation that fits these variables:
$\mathrm{F}=\mathrm{ma}$ (Newton's second law) - means m multiplied by a
Step 3: Solve for the variable you are looking for:
(Note: If the equation is already solved for what you are looking for [like the F in F = ma] you can skip this step.)

Since ma is multiplication, then to get a by itself, divide by a on both sides:
$\frac{\mathrm{F}}{\mathrm{m}}=\frac{\mathrm{ma}}{\mathrm{m}} \quad$ and the m 's cancel on the right side
So: $\mathrm{a}=\frac{\mathrm{F}}{\mathrm{m}} \quad$ which means $\mathrm{a}=\mathrm{F} \div \mathrm{m}$
Steps 4 and 5: Put the numbers in and calculate an answer: $\mathrm{a}=\frac{\mathrm{F}}{\mathrm{m}}=\frac{125 \mathrm{~N}}{25 \mathrm{~kg}}=5 \mathrm{~m} / \mathrm{s}^{2} \quad \begin{aligned} & \text { remember that acceleration is } \\ & \text { in } \mathrm{m} / \mathrm{s}^{2} \text { (look on the letter chart). }\end{aligned}$

Problem 3:

A lever has an input arm of 25 m and an output arm of 5 m . How much force would it take to lift a 100 N with this lever?

Step 1: $\mathrm{Arm}_{\text {in }}=25 \mathrm{~m} \quad \mathrm{Arm}_{\text {out }}=5 \mathrm{~m} \mathrm{~F} \quad \mathrm{~F}_{\text {out }}=100 \mathrm{~N} \mathrm{~F}$ in $=$?
Step 2: $\operatorname{Arm}_{\text {in }}\left(\mathrm{F}_{\text {in }}\right)=\operatorname{Arm}_{\text {out }}\left(\mathrm{F}_{\text {out }}\right)$
Step 3: since $\operatorname{Arm}_{\text {in }}\left(\mathrm{F}_{\text {in }}\right)$ means multiplication, divide both sides by $\operatorname{Arm}_{\text {in }}: \quad \operatorname{Arm}_{\text {in }}\left(\mathrm{F}_{\text {in }}\right) / \mathrm{Arm}_{\text {in }}=\operatorname{Arm}_{\text {out }}\left(\mathrm{F}_{\text {out }}\right) / \mathrm{Arm}_{\text {in }}$

Arm $_{\text {in }}$ cancels on the left giving: $\mathrm{F}_{\text {in }}=\operatorname{Arm}_{\text {out }}\left(\mathrm{F}_{\text {out }}\right) / \mathrm{Arm}_{\text {in }}$
Step 4 and $5: \quad F_{\text {in }}=5 \mathrm{~m}(100 \mathrm{~N}) / 25 \mathrm{~m}$ or $5 \mathrm{~m} \mathrm{X} 100 \mathrm{~N} \div 25 \mathrm{~m}$ (use a calculator!)

$$
\mathrm{F}_{\text {in }}=20 \mathrm{~m}
$$

Problem 2:
A plane stops from $250 \mathrm{~m} / \mathrm{sec}$ in 10 seconds. What was its acceleration?

Step 1: assign variables to the numbers given and to what you are looking for:
$\mathrm{S}_{1}=250 \mathrm{~m} / \mathrm{s} \quad \mathrm{S}_{2}=0 \mathrm{~m} / \mathrm{s}$
$\Delta \mathrm{T}($ change of time $)=10$ secs.
$\mathrm{a}=$?
Step 2: Find an equation that fits these variables:
Here we have 2 equations: $\Delta \mathrm{S}=\mathrm{S}_{2}-\mathrm{S}_{1}$ and a $=\Delta \frac{\mathrm{S}}{\Delta}$
Step 3: Solve for the variable you are looking for:
(For this problem we don't have to do this step.)
Steps 4 and 5: Put the numbers in and calculate an answer: To calculate the acceleration, first we must get $\Delta \mathrm{S}$.

So, $\Delta S=0 \mathrm{~m} / \mathrm{s}-250 \mathrm{~m} / \mathrm{s}=-250 \mathrm{~m} / \mathrm{s}$
(the $\Delta \mathrm{S}$ is negative because it stops from $250 \mathrm{~m} / \mathrm{s}$)
So, $\mathrm{a}=\Delta \frac{\mathrm{S}}{\Delta \mathrm{T}}=\frac{-250 \mathrm{~m} / \mathrm{s}}{10 \mathrm{~s}}=-25 \mathrm{~m} / \mathrm{s} 2$

Problem 4:

A 40 kg boy throws a 2 kg ball to the left. The boy ends up going to the right a $2 \mathrm{~m} / \mathrm{s}$. How fast is the ball going?

Step 1: $\mathrm{m}_{\text {ball }}=2 \mathrm{~kg} \quad \mathrm{v}_{\text {ball }}=$? $\mathrm{m}_{\text {boy }}=40 \mathrm{~kg} \quad \mathrm{v}_{\text {boy }}=2 \mathrm{~m} / \mathrm{s}$
Step 2: $m_{L} v_{L}=m_{R} v_{R}$ (boy is m_{R} and v_{R}, ball is m_{L} and v_{L})
Step 3: solve for v_{L} (ball) $m_{L} v_{L}=m_{R} v_{R}$
divide both sides by $m_{L} \quad m_{L} v_{L} / m_{L}=m_{R} v_{R} / m_{L}$
m_{L} 's cancel on the left giving: $v_{L}=m_{R} v_{R} / m_{L}$
Step 4 and 5: $\mathrm{v}_{\mathrm{L}}=40 \mathrm{~kg}(2 \mathrm{~m} / \mathrm{s}) / 2 \mathrm{~kg}=(80 \mathrm{kgm} / \mathrm{s}) / 2 \mathrm{~kg}$
kgs cancel out giving us: $\quad \mathrm{v}_{\mathrm{L}}=40 \mathrm{~m} / \mathrm{s}$

$\begin{aligned} & \mathrm{S}=\Delta \mathrm{D} / \Delta \mathrm{T} \\ & \mathrm{~A}=\Delta \mathrm{S} / \Delta \mathrm{T} \\ & \Delta \mathrm{~T}=\mathrm{T}_{2}-\mathrm{T}_{1} \\ & \Delta \mathrm{D}=\mathrm{D}_{2}-\mathrm{D}_{1} \\ & \mathrm{~S}_{\text {average }}=\mathrm{D}_{\text {total }} / \mathrm{T}_{\text {total }} \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\text {net }}=m a \\ & \mathrm{~F}_{\text {net }}=\mathrm{F}_{\mathrm{pos}}-\mathrm{F}_{\text {neg }} \\ & \mathrm{F}_{\mathrm{w}}=\mathrm{mg} \\ & \mathrm{p}=\mathrm{mv} \\ & m_{L} v_{L}=m_{R} v_{R} \end{aligned}$	$\begin{aligned} & \mathrm{MA}=\mathrm{F}_{\text {out }} / \mathrm{F}_{\text {in }} \\ & \mathrm{MA}=\mathrm{D}_{\mathrm{E}} / \mathrm{D}_{\mathrm{R}} \\ & \operatorname{Arm}_{\text {in }}\left(\mathrm{F}_{\text {in }}\right)=\operatorname{Arm}_{\text {out }}\left(\mathrm{F}_{\text {out }}\right) \end{aligned}$	

